Abstract

In this paper, we investigate a novel framework for achieving prescribed-time (PAT), fixed-time (FXT) and finite-time (FNT) stochastic synchronization control of semi-Markov switching quaternion-valued neural networks (SMS-QVNNs), where the setting time (ST) of PAT/FXT/FNT stochastic synchronization control is effectively preassigned beforehand and estimated. Different from the existing frameworks of PAT/FXT/FNT control and PAT/FXT control (where PAT control is deeply dependent on FXT control, meaning that if the FXT control task is removed, it is impossible to implement the PAT control task), and different from the existing frameworks of PAT control (where a time-varying control gain such as μ(t)=T/(T−t) with t∈[0,T) was employed, leading to an unbounded control gain as t→T− from the initial time to prescribed time T), the investigated framework is only built on a control strategy, which can accomplish its three control tasks (PAT/FXT/FNT control), and the control gains are bounded even though time t tends to the prescribed time T. Four numerical examples and an application of image encryption/decryption are given to illustrate the feasibility of our proposed framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call