Abstract

The Internet of Things (IoT) is promising to transform a wide range of fields. However, the open nature of IoT makes it exposed to cybersecurity threats, among which identity spoofing is a typical example. Physical layer authentication, which identifies IoT devices based on the physical layer characteristics of signals, serves as an effective way to counteract identity spoofing. In this paper, we propose a deep learning-based framework for the open-set authentication of IoT devices. Specifically, additive angular margin softmax (AAMSoftmax) was utilized to enhance the discriminability of learned features and a modified OpenMAX classifier was employed to adaptively identify authorized devices and distinguish unauthorized ones. The experimental results for both simulated data and real ADS–B (Automatic Dependent Surveillance–Broadcast) data indicate that our framework achieved superior performance compared to current approaches, especially when the number of devices used for training is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.