Abstract
Most dominant point detection methods require heuristically chosen control parameters. One of the commonly used control parameter is maximum deviation. This paper uses a theoretical bound of the maximum deviation of pixels obtained by digitization of a line segment for constructing a general framework to make most dominant point detection methods non-parametric. The derived analytical bound of the maximum deviation can be used as a natural bench mark for the line fitting algorithms and thus dominant point detection methods can be made parameter-independent and non-heuristic. Most methods can easily incorporate the bound. This is demonstrated using three categorically different dominant point detection methods. Such non-parametric approach retains the characteristics of the digital curve while providing good fitting performance and compression ratio for all the three methods using a variety of digital, non-digital, and noisy curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.