Abstract
Provisioning guaranteed Quality of Service (QoS) in multiservice wireless internet is challenging due to diverse nature of end-user traffic (e.g., voice, streaming video, interactive gaming) passing through heterogeneous interconnected domains with their own policies and procedures. Numerous studies have shown that multimedia traffic carried in wireless internet possesses self-similar and long-range dependent characteristics. Nonetheless, published work on wireless traffic modeling is merely based on traditional Poisson traffic distribution which fails to capture these characteristics and hence yield misleading results. Moreover, existing work related to self-similar traffic modeling is primarily based on conventional queuing and scheduling combinations which are simple approximations.This paper presents a novel analytical framework for G/M/1 queuing system based on realistic internet traffic distribution to provide guaranteed QoS. We analyze the behavior of multiple classes of self-similar traffic based on newly proposed scheduling-cum-polling mechanism (i.e., combination of priority scheduling and limited service polling model). We formulate the Markov chain for G/M/1 queuing system and present closed form expressions for different QoS parameters i.e., packet delay, packet loss rate, bandwidth, jitter and queue length. We develop a customized discrete event simulator to validate the performance of the proposed analytical framework. The proposed framework can help in building comprehensive service level agreements for heterogeneous wireless domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.