Abstract

Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.