Abstract

In this work, a novel fractal model for the laminar flow in roughened cylindrical microchannels is proposed. The average height of rough elements is derived using the fractal theory. The effects of relative roughness on the friction factor and the Poiseuille number are discussed. It is found that the Darcy friction factor and the Poiseuille number increase with the increase in the relative roughness in the cylindrical microchannel. Besides, it is observed that the Darcy friction factor decreases with the increase in the Reynolds number. Each parameter of the proposed model has a clear physical meaning. The present model can properly reveal some mechanisms that affect the laminar flow in roughened cylindrical microchannels. The present model improves the understanding of the physical mechanisms of fluid flows through roughened cylindrical microchannels. Our model predictions are compared with the existing experimental data, and good agreement can be found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.