Abstract
A challenging problem in spectral unmixing is how to determine the number of endmembers in a given scene. One of the most popular ways to determine the number of endmembers is by estimating the virtual dimensionality (VD) of the hyperspectral image using the well-known Harsanyi–Farrand–Chang (HFC) method. Due to the complexity and high dimensionality of hyperspectral scenes, this task is computationally expensive. Reconfigurable field-programmable gate arrays (FPGAs) are promising platforms that allow hardware/software codesign and the potential to provide powerful onboard computing capabilities and flexibility at the same time. In this paper, we present the first FPGA design for the HFC-VD algorithm. The proposed method has been implemented on a Virtex-7 XC7VX690T FPGA and tested using real hyperspectral data collected by NASA’s Airborne Visible Infra-Red Imaging Spectrometer over the Cuprite mining district in Nevada and the World Trade Center in New York. Experimental results demonstrate that our hardware version of the HFC-VD algorithm can significantly outperform an equivalent software version, which makes our reconfigurable system appealing for onboard hyperspectral data processing. Most important, our implementation exhibits real-time performance with regard to the time that the hyperspectral instrument takes to collect the image data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.