Abstract

On the basis of apparent molecular mass heterogeneity following reducing versus nonreducing SDS-PAGE, we determined that the beta-subunit of macaque (Macaca fascicularis) chorionic gonadotropin (mCG-beta) is more conformationally constrained than the beta-subunit of human chorionic gonadotropin (hCG-beta). The amino acid sequences of these two subunits are 81% identical. To determine the conformational variance source, which was not due to glycosylation differences, we generated a series of hCG-beta-mCG-beta chimeras and identified domains that contributed to CG-beta conformational freedom. We discovered that the CG-beta 54-101 domain contained a small subdomain, residues 74-77, that regulated the conformational freedom of the beta-subunit; i.e., when residues 74-77 were of macaque origin (PGVD), the mutated hCG-beta subunit displayed macaque-like conformational rigidity, and when residues 74-77 were of human origin (RGVN), the mutated mCG-beta subunit displayed human-like conformational freedom and microheterogeneity. Additionally, CG-beta N-terminal domain residues (8, 18, 42, and 46-48) were also found to influence CG-beta conformational freedom when residues 74-77 were of human but not macaque origin. The biological significance of the CG-beta conformational variance was tested using a biological assay that showed that the hCG-alpha-hCG-beta heterodimer facilitated human CG receptor-mediated cAMP-driven luciferase reporter gene activity in HEK cells nearly 1 order of magnitude more effectively than the hCG-alpha-mCG-beta chimera. Together, these data demonstrate that two essential amino acid residues within a four-amino acid subdomain regulated CG-beta conformational freedom and that a conformational difference between hCG-beta and mCG-beta was recapitulated in the context of receptor-mediated CG heterodimer signal transduction activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.