Abstract

This paper proposes a novel formulation of economic model predictive control (MPC) for linear systems with periodic operations. In this economic MPC design, the optimal periodic trajectory from an economic point of view is unknown, hence it is not possible to follow a standard control strategy in which the MPC uses this trajectory to define a terminal constraint to guarantee closed-loop convergence. The economic cost function is optimized with a periodicity constraint at each time step considering all periodic trajectories in a period including the current state. The recursive feasibility and closed-loop convergence to the optimal periodic trajectory are analyzed using the Karush-Kuhn-Tucker conditions. Finally, two simulations are provided to demonstrate the main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.