Abstract
Failure Modes, Effects, and Criticality Analysis (FMECA) is a commonly used method for analyzing system reliability. It is frequently applied in identifying weak points in the reliability of CNC machine tools. However, traditional FMECA has issues such as vague descriptions of risk factors, equal treatment of risk factors, and unclear directions for improving weak points. In response to the issue of vague descriptions of risk factors, this paper further expands severity (S) into machine hazard (M) and personal hazard (P), and subdivides detectability (D) into functional structural complexity (D1) and detection cost (D2). In addressing the issue of treating risk factors equally, this paper integrates Distance Analysis Method (DAM) and Grey Relational Analysis (GRA) to propose Distance-Grey Relational Analysis (D-GRA). Subsequently, based on the D-GRA method, the weights of each risk factor were determined by comprehensively considering expert system scores and actual economic loss indicators. In response to the issue of unclear improvement directions for weak points, this paper introduces the BCC model. It treats common failure modes of CNC machine tools as decision-making units within the BCC model, refines risk factors as input indicators, and evaluates the efficiency values of each decision-making unit based on various actual losses as output indicators. Through efficiency value analysis, it proposes improvement directions for weak points. Then, based on the weights of risk factors and the efficiency values of failure modes, a modified calculation method for the new Risk Priority Number (RPN) is proposed to amend the traditional RPN, This paper takes the electric spindle system of a certain machining center as an example, applies the proposed method to rank common failure modes with the new RPN, and compares it with other RPN calculation methods to verify the rationality of the proposed approach. Finally, it presents improvement directions for reliability enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.