Abstract

A new AB2 monomer 4-hydroxyl-4′,4′′-difluorotriphenylmethane was successfully synthesized via a Friedel–Crafts alkylation of phenol from 4,4′-difluorodiphenylmethanol. Based on the AB2 monomer, novel fluoro-terminated hyperbranched poly(phenylene oxide)s (FHPPOs) were synthesized via the SNAr reaction by self-condensation in one step. The FHPPOs were characterized by various techniques, including NMR, FT-IR, GPC, TGA and DSC. It was found that the molecular weight and polydispersity index of the FHPPOs increased with monomer concentration and reaction time. The degree of branching of the FHPPOs, determined by 13C NMR and 19F NMR with the aid of model compounds, decreased from 0.63 to 0.53 as the molecular weight increased. The glass transition temperature (Tg) of the FHPPOs increased with increasing molecular weight, up to 164 °C when the Mn was over 6, 800. The FHPPOs showed excellent thermal stability up to a Td5 temperature of 559 °C. Because of the low polarity of the poly(phenyl oxide) (PPO) backbones, abundant fluoro-terminated groups, which have large molar free volume, low polarizability of C–F bonds, and inherent free volume or molecule-scale cavities in hyperbranched structures, the addition of FHPPO into diglycidyl ether of bisphenol A (DGEBA) could effectively lower the relative dielectric constant, the dissipation factor, and moisture absorption of the cured DGEBA/FHPPO composites. The free volume of the composites, which was quantified by positron annihilation lifetime spectroscopy (PALS), increased with increased FHPPO loading. The excellent dielectric and thermal properties make FHPPO a promising low-k modifier for epoxy resins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call