Abstract

Lipid droplets (LDs) are dynamic organelles which associated with many metabolic processes. Reliable long-term imaging of LD is of great importance in LD-based therapy and research. Conventional fluorescent probes suffer from poor photostability and difficulty of preparation, which compromise their LD imaging ability. In this study, we aim to provide a novel and universal fluorescent probe for LD-specific imaging in both eukaryotic and prokaryotic cells. The versatile and potential applications of the probe were also evaluated. We used one-step Suzuki coupling reaction to synthesize a fluoro-pyrazine-bridged donor-acceptor-donor fluorescent probe (T-FP-T). The fluorescent properties and stability of T-FP-T were detected. Then, LD-specific imaging and dynamic movement tracking capabilities of T-FP-T were studied in fungus, bacteria, plant and animal tissues. The biosafety and photodynamic toxicity of the probe under different light irradiation were characterized. T-FP-T showed large Stokes shift, superior brightness, excellent photostability, low toxicity. T-FP-T exhibited significant overlaps with adipophilin antibody or the commercial LD probe (LipidSpot™) in the cytoplasm, but not with Mitotracker red, Lysotracker red and Peroxisome Labeling dye. Moreover, T-FP-T also showed efficient superoxide anion generation capability under white LED light irradiation. The viability of Hela cells co-treated with T-FP-T and 1-h white LED light irradiation decreased to 62%. All these outstanding capabilities make T-FP-T a new efficient LD-specific imaging probe. The generated superoxide anion from T-FP-T under white LED light irradiation could cause obvious cell death, which will inspire broad study in LD-targeted photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call