Abstract

The present study introduces a novel fluorescent sensor with an overtone peak reference designed for the detection of mercury (Ⅱ) ions (Hg2+) and hydrogen sulfide (H2S). The study proposes two novel response mechanisms that hinges on the synergistic effect of cation exchange dissociation (CED) and photo-induced electron transfer (PET). This sensor exhibits a remarkable detection limit of 2.9 nM for Hg2+. Additionally, the sensor reacts with H2S to generate nickel sulfide (NiS) semiconductor nanoparticles, which amplify the fluorescence signal and enable a detection limit of 3.1 nM for H2S. The detection limit for H2S is further improved to 29.1 pM through the surface functionalization of the nanomaterial with pyridine groups (increasing reactivity) and chelation of gold nanoparticles (AuNPs), which enhances the sensor's specificity. This improvement is primarily due to the surface plasmon resonance (SPR) of AuNPs and their affinity for H2S. The single-emission strategy can yield skewed results due to environmental changes, whereas the overtone peak reference strategy enhances result accuracy and reliability by detecting environmental interference through reference emission peaks. In another observation, the low-toxicity dihydropyrene-bipyridine nanorods (TPP-BPY) has been successfully utilized for both endogenous and exogenous H2S detection in vivo using a mouse model. The successful development of TPP-BPY is expected to provide an effective tool for studying the role of H2S in biomedical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call