Abstract
A new fluorescent sensor based on diethylaminosalicylaldehyde-thiosemicarbazide (DST) was studied using a combination of density functional theory calculations and experimental investigations. DST was able to detect the metal ions Ag+ and Hg2+ in the presence of various competing metal ions and anions, with detection limits of 0.45 and 0.34 µM, respectively. The DST sensor could operate in a fully aqueous environment and within a wide pH range from 5 to 9. Density functional theory studies supported the experimental findings in determining the stable structures of the DST sensor and the complexes between DST and the Ag+ and Hg2+ ions, as well as elucidating the fluorescence ON-OFF mechanism in the DST sensor and the complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.