Abstract
A novel fluorescent sensor for the recognition of Hg2+ in aqueous media was developed by assembly of 2,6-bis(2-benzimidazolyl) pyridine to SBA-15 nanoporous silica. The synthesized materials were characterized by techniques such as XRD, FT-IR, N2 adsorption–desorption, and TGA. Investigation of fluorescence properties of prepared material revealed emission spectra having maxima at 396 nm following excitation at 353 nm. It was found that the fluorescence intensity of the SBA-15 functionalized material remarkably quenched in the presence of Hg2+ ions in the pH range of 6–8, showing high selectively toward mercury ion among the more common tested cations. The fluorescence titration studies confirmed the linear relation between the concentration of Hg2+ ion and the fluorescence intensity quenching, and the lowest detection limit was calculated as 2.6 × 10−6 M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.