Abstract

A D-A type of luminophore, TPA-CDP, was designed and synthesized by using triphenylamine (TPA) as D (electron donor), 1,3-diaryl pyrazole with cyano groups (CDP) as A (electron acceptor) and employing a cyanovinyl segment as a recognition group. Firstly, TPA-CDP demonstrates effective fluorescence quenching as a sensor for I- by the nucleophilic addition reaction of the cyanovinyl segment with a high level of sensitivity, selectivity and a low determination limit of 4.43 μM. Interestingly, TPA-CDP exhibited an AIE phenomenon with the fw value reaching 50%. In addition, TPA-CDP displayed distinct mechanochromic fluorescence behavior with 70 nm red shift, which was observed over four repeated cycles. Furthermore, the mechanochromic fluorescence behavior of TPA-CDP, as observed in powder XRD experiments, was found to be associated with the morphological transition from a crystalline state to an amorphous state. These results confirm the significant potential of CDP as a powerful electron-deficient component in the creation of D-A-type mechanochromic fluorescence materials and biosensors for detecting I-.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call