Abstract

In this study, we innovatively synthesized bipyridine ruthenium cluster nanosheets (RuMOFNCs), a novel metal-organic framework material that exhibits both fluorescence and electrochemiluminescence. Gold nanoparticles (AuNPs) were anchored onto RuMOFNCs via bipyridine chelation, enhancing optical signals and creating sites for attaching biologically functional probes. We employed tetraferrocene-modified DNA probes, linked via gold-sulfur (Au-S) bonds, to construct a dual-mode fluorescence-electrochemiluminescence biosensor. This sensor, exploiting exonuclease III (Exo III)-mediated cyclic amplification, inhibits the electron transfer from RuMOFNC to tetraferrocene, resulting in amplified fluorescence and electrochemiluminescence signals. The sensor demonstrates exceptional sensitivity for detecting the BRAF gene, with fluorescence and electrochemiluminescence detection limits of 10.3 aM (range: 0.1 fM to 1 nM) and 3.1 aM (range: 1 aM to 10 pM), respectively. These capabilities are attributed to RuMOFNCs' luminescence properties, tetraferrocene's quenching effect, and the specificity of base pairing. This study's findings hold substantial promise for biomedical research and clinical diagnostics, particularly in precision medicine and early disease detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call