Abstract

Exhaust ventilation system with one central fan and multiple terminals has been widely used for the heat and contaminant removal in building environment. Conventional design without pressure balancing leads to uneven distribution of exhaust airflow rate among the multiple outlets. Existed balancing methods usually uses dampers (constant-air-volume valve or regulating valve), tapered duct, or varied inlet area. However, these methods result in higher fan energy consumption, or complicated construction and on-site commissioning. In this paper, a flow-guide device was developed for adjusting the pressure distribution of duct branches. This new device is integrated with the interflow Tee-junction and does not need any commissioning or regulating. The resistance performance of the device responding to the structural parameter was derived using the CFD simulation and experiment. The negative direct resistance featured by the device was found to effectively benefit exhaust at the outlets farther away from the central fan. The ductwork hydraulic model based on the Bernoulli's law of airflow and the fitted resistance correlations were further proposed to fulfill the parametric design. Finally, full-scale test was carried out for a central exhaust system installed with the flow-guide devices referring to a factory workshop with 30 heat and contaminant sources. Compared to the system without the devices, the total rate of the system increased by 25%. Discrepancy of exhaust rate decreased by 78% and uneven degree decreased by 82%, which well meets the engineering balancing requirement. Meanwhile, total resistance of the system reduced 23.8% owing to the negative loss the devices bring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.