Abstract

Effective immobilization and transportation are vital to the life-saving acute medical care needed when treating critically injured people. However, the most common types of stretchers used today are wrought with problems that can lead to further medical complications, difficulty in employment and rescue, and ineffective transitions to hospital treatment. Here we report a novel first aid stretcher called the “emergency carpet”, which solves these problems with a unique design for spine injured patients. Polyurethane composite material, obtained by a novel process of manually mixing isocyanate and additives, can be poured into a specially designed fabric bag and allowed to harden to form a rigid human-shaped stretcher. The effectiveness of the emergency carpet was examined in the pre-hospital management of victims with spinal fractures. Additionally, it was tested on flat ground and complex terrain as well as in the sea and air. We demonstrated that the emergency carpet can be assembled and solidified on the scene in 5 minutes, providing effective immobilization to the entire injured body. With the protection of the emergency carpet, none of the 20 patients, who were finally confirmed to have spinal column fracture or dislocation, had any neurological deterioration during transportation. Furthermore, the carpet can be handled and transported by multiple means under differing conditions, without compromising immobilization. Finally, the emergency carpet allows the critically injured patient to receive multiple examinations such as X-ray, CT, and MRI without being removed from the carpet. Our results demonstrate that the emergency carpet has ideal capabilities for immobilization, extrication, and transportation of the spine injured patients. Compared with other stretchers, it allows for better mobility, effective immobilization, remarkable conformity to the body, and various means for transportation. The emergency carpet is promising for its intrinsic advantages in the pre-hospital management of accident victims.

Highlights

  • Worldwide, physical trauma is a leading cause of death and disability

  • Formation of the Emergency Carpet The whole set of the emergency carpet can be packaged in a carrying bag weighing around 4 kg (Fig.1)

  • After mixing and pouring the special polyurethane composite material into the fabric bag and conducting the binding and molding procedure, a rigid emergency carpet, completely molded in conformity to the body is created within 5 minutes (Fig. 2)

Read more

Summary

Introduction

Data from the World Health Organization (Global Burden of Diseases, Injuries, and Risk Factors Study 2005) showed about 16,000 people died from injury every day, and for each person who died, several thousand more were injured, many of them with permanent sequelae. Injury accounts for 16% of the global burden of disease. Injury care and management have seen significant advances over the last decade. Together with evolving new therapies, efforts should be made to improve strategies for emergency management. Since most injuries take place away from medical facilities, the need for rapid, valid, and effective immobilization and transportation of the critically wounded is urgent for emergency providers in accidents or military actions. Effective immobilization becomes crucial when wounds and injuries of the spinal column and cord occur

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call