Abstract

Compared with the standard finite-set model-based predictive current control (FS-MPCC), the finite-set ultra-local model-based predictive current control (FS-ULMPCC) removes the use of actual system parameters and thus has some advantages like good robustness and easy implementation. However, the steady-state performance of FS-ULMPCC is relatively weak. In this paper, a novel FS-ULMPCC method is proposed and applied to the AC/DC converter of a direct-driven wind power generation system. The proposed method is designed based on a linear-extended state observer (LESO). In particular, a new control set reconstruction strategy is proposed to improve the steady-state performance. Only three options are included in the reconstructed control set, and each one is associated with two independent, active voltage vectors and their durations. The proposed FS-ULMPCC method is compared with the traditional one through experiments. The proposed method includes enhanced steady-state performance and reduced computational burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.