Abstract

It is a challenging problem to overcome shift and rotation and nonlinearity in fingerprint images. By analyzing the shortcoming of fingerprint recognition algorithm on shift or rotation images at present, manifold learning algorithm is introduced. A fingerprint recognition algorithm has been proposed based on locally linear embedding of variable neighbourhood k (VK-LLE). Firstly, approximate geodesic distance between any two points is computed by ISOMAP ( isometric feature mapping) and then the neighborhood is determined for each point by the relationship between its local estimated geodesic distance matrix and local Euclidean distance matrix. Secondly, the dimension of fingerprint image is reduced by nonlinear dimension-reduction method. And the best projected features of original fingerprint data of large dimension are acquired. By analyzing the changes of recognition accuracy with the neighborhood and embedding dimension, the neighborhood and embedding dimension is determined at last. Finally, fingerprint recognition is accomplished by Euclidean distance Classifier. The experimental results based on standard fingerprint datasets have verified the proposed algorithm had a better robustness to those fingerprint images of shift or rotation or nonlinearity than the algorithm using LLE, thus this method has some values in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call