Abstract

In this paper, we develop a novel filtering algorithm for Hammerstein-Wiener State-Space Systems. The likelihood function of the noisy nonlinear output signal given the system state is approximated by a Gaussian-Legendre quadrature rule. This approximation produces an explicit model of this likelihood function with a Gaussian Sum structure. Based on the general Bayesian filtering framework, we develop a Gaussian Sum Filter algorithm to obtain the a posteriori probability density function of the state given the current and past nonlinear output. With the characterization of the a posteriori probability function, we can obtain the associated statistics of the state. Finally, we present numerical examples to illustrate the benefits of our proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.