Abstract

Although the lithium metal is considered as the most promising anode for high energy density batteries, uncontrolled lithium dendrite growth and continuous side reactions with electrolyte hinder its practical applications for rechargeable batteries. Herein, we prepared a gel polymer electrolyte by synthesizing a novel 250 nm filler (KMgF3), which is greatly beneficial to the formation of a uniformly deposited lithium-metal anode. This is due to the regulation effect of KMgF3 that double the lithium-ion transference number up to 0.63 and adjust the solid electrolyte interphase layer full of dense LiF and flexible polycarbonates, which greatly reduces the side reactions on the lithium-metal surface and inhibits the growth of lithium dendrites. Consequently, the composite gel polymer electrolyte guarantees a stable long cycle performance of more than 1400 h with 1 mA h cm-2 for symmetric cells. Moreover, the composite gel polymer electrolyte demonstrates high compatibility and great promise for rechargeable lithium-sulfur (Li-S) batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.