Abstract

Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call