Abstract

A novel and robust phenyl-functionalized MSU-1 (Ph-MSU) coated fiber for solid-phase microextraction (SPME) coupled to high performance liquid chromatography (HPLC) was developed for the preconcentration and the determination of 2,4,4′-trichlorobiphenyl (PCB 28), 2,4′,5-trichlorobiphenyl (PCB 31), 2,2′,5,5′-tetrachlorobiphenyl (PCB 52), 2,2′,4,5,5′-pentachlorobiphenyl (PCB 101), 2,3′,4,4′,5-pentachlorobiphenyl (PCB 118), 2,2′,3,4,4′,5′-hexachlorobiphenyl (PCB 138), 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153), and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl (PCB 180) in environmental water samples. Experimental conditions affecting SPME were examined in detail. The Ph-MSU coating provided large porosity and short-range mesostructures necessary for high extraction capacity and rapid mass transfer of PCBs. The Ph-MSU coated fiber exhibited selectivity for PCB 28, PCB 31, PCB 118, and PCB 138 in a limited extraction time. Good linearity for all PCBs was obtained with correlation coefficients from 0.9987 to 0.9994. The recoveries were within 94.3% to 103% for the spiked water with 300 ng · L−1 per PCB. The relative standard deviations (RSDs) ranged from 3.10% to 6.23% and the limits of detection (LODs) were between 8.73 ng · L−1 and 13.8 ng · L−1. The proposed method was applied for the determination of PCBs in real river water and rainwater samples. The median recoveries ranged from 85.6% to 118% with RSDs between 4.23% and 8.78%. The experimental results demonstrated that the Ph-MSU fiber coating could be reused for over 250 times without loss of the extraction efficiency. These results clearly indicate that the Ph-MSU coated fiber was rapid, sensitive, and suitable for the preconcentration and determination of trace PCBs in environmental water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call