Abstract
A novel measurement and correction technique employing an ultra-high-precision laser displacement meter (LDM) with a 20-nm resolution to probe the postweld-shift (PWS)-induced fiber alignment shifts in laser-welded laser module packaging is presented. The results show that the direction and magnitude of the fiber alignment shifts induced by the PWS in laser-welded laser module packaging can be quantitatively determined by four parameters: the lateral position (r), the position angle (/spl alpha/), the swing angle (/spl theta/), and the tilt angle (/spl psi/). Further studies show that the deformation of the lateral shift and the position angle are the dominant mechanisms that determine the fiber alignment shifts induced by the PWS. This clearly indicates that the PWS can be quantitatively corrected timely by applying a single weld spot on the negative lateral shift and the position angle to compensate for the fiber alignment shifts. In comparison with previous studies of the PWS correction by a qualitatively estimated technique, this LDM technique has significantly provided an important tool for quantitative measurement and correction to the effect of the PWS on the fiber alignment shifts in laser-welded laser module packaging. Therefore, the reliable laser modules with high yield and high performance used in low-cost lightwave transmission systems may be developed and fabricated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.