Abstract

BackgroundRumor detection is a popular research topic in natural language processing and data mining. Since the outbreak of COVID-19, related rumors have been widely posted and spread on online social media, which have seriously affected people’s daily lives, national economy, social stability, etc. It is both theoretically and practically essential to detect and refute COVID-19 rumors fast and effectively. As COVID-19 was an emergent event that was outbreaking drastically, the related rumor instances were very scarce and distinct at its early stage. This makes the detection task a typical few-shot learning problem. However, traditional rumor detection techniques focused on detecting existed events with enough training instances, so that they fail to detect emergent events such as COVID-19. Therefore, developing a new few-shot rumor detection framework has become critical and emergent to prevent outbreaking rumors at early stages.MethodsThis article focuses on few-shot rumor detection, especially for detecting COVID-19 rumors from Sina Weibo with only a minimal number of labeled instances. We contribute a Sina Weibo COVID-19 rumor dataset for few-shot rumor detection and propose a few-shot learning-based multi-modality fusion model for few-shot rumor detection. A full microblog consists of the source post and corresponding comments, which are considered as two modalities and fused with the meta-learning methods.ResultsExperiments of few-shot rumor detection on the collected Weibo dataset and the PHEME public dataset have shown significant improvement and generality of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.