Abstract

Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fetal ECG from abdominal ECG signals is still considered as a challenging task in biomedical analysis. This is mainly due to corrupted high amplitude maternal ECG signals, low signal to noise ratio of fetal ECG signal, difficulties in reduction of QRS (Q wave, R wave, S wave) complexities, fetal ECG signal superimposed characteristics, other motion, and electromyography artifacts. To reduce these conventional challenges, in fetal ECG analysis of a novel Conditional Generative adversarial network (CGAN) is introduced in this research work to extract the fetal ECG signal. The proposed classification model was classified efficiently in fetal ECG signals from non-invasive abdominal ECG signals. The experimental analysis demonstrates that the proposed network model provides better results in terms of sensitivity, specificity, and accuracy compared to the conventional fetal ECG extraction models like singular value decomposition, periodic component analysis, and Adaptive neuro-fuzzy inference system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call