Abstract

RNA-seq data are challenging existing omics data analytics for its volume and complexity. Although quite a few computational models were proposed from different standing points to conduct differential expression (D.E.) analysis, almost all these methods do not provide a rigorous feature selection for high-dimensional RNA-seq count data. Instead, most or even all genes are invited into differential calls no matter they have real contributions to data variations or not. Thus, it would inevitably affect the robustness of D.E. analysis and lead to the increase of false positive ratios.In this study, we presented a novel feature selection method: nonnegative singular value approximation (NSVA) to enhance RNA-seq differential expression analysis by taking advantage of RNA-seq count data's non-negativity. As a variance-based feature selection method, it selects genes according to its contribution to the first singular value direction of input data in a data-driven approach. It demonstrates robustness to depth bias and gene length bias in feature selection in comparison with its five peer methods. Combining with state-of-the-art RNA-seq differential expression analysis, it contributes to enhancing differential expression analysis by lowering false discovery rates caused by the biases. Furthermore, we demonstrated the effectiveness of the proposed feature selection by proposing a data-driven differential expression analysis: NSVA-seq, besides conducting network marker discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call