Abstract
Recognizing smiles is of much importance for detecting happy moods. Gabor features are conventionally widely applied to facial expression recognition, but the number of Gabor features is usually too large. We proposed to use Pyramid Histogram of Oriented Gradients (PHOG) as the features extracted for smile recognition in this paper. The comparisons between the PHOG and Gabor features using a publicly available dataset demonstrated that the PHOG with a significantly shorter vector length could achieve as high a recognition rate as the Gabor features did. Furthermore, the feature selection conducted by an AdaBoost algorithm was not needed when using the PHOG features. To further improve the recognition performance, we combined these two feature extraction methods and achieved the best smile recognition rate, indicating a good value of the PHOG features for smile recognitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.