Abstract

A novel feature-based tracking approach based on the Kalman filter is proposed for the detection, localization, and 3-D reconstruction of internal defects in hardwood logs from cross-sectional computer tomography (CT) images. The defects are simultaneously detected, classified, localized, and reconstructed in 3-D space, making the proposed scheme computationally much more efficient than existing methods where the defects are detected and localized independently in individual CT image slices and the 3-D reconstruction of the defects accomplished via correspondence analysis across the various CT image slices. Robust techniques for defect detection and classification are proposed. Defect class-specific tracking schemes based on the Kalman filter, B-spline contour approximation, and Snakes contour fitting are designed which use the geometric parameters of the defect contours as the tracking variables. Experimental results on cross-sectional CT images of hardwood logs from select species such as white ash, hard maple, and red oak are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.