Abstract
Agriculture is the backbone of Bangladesh’s economy and it is one of the largest employment sectors. In Bangladesh, the population is increasing rapidly and at the same time, the total cultivable land is decreasing significantly. To ensure maximum crop production using the limited land resources, it is essential to identify and select the appropriate type of soil because different crops need different soil types. Currently, there are two types of methods available to determine the soil type, namely chemical and image analysis. Although the first one is accurate, it is expensive and time consuming. On the other hand, image based soil classification is much cheaper and faster but its accuracy level is low. In this study, we present a novel feature based algorithm that combines quartile histogram oriented gradients (Q-HOG), most frequent varphi -Pixels and a new feature selection method for classifying soil types. We have used four machine learning algorithms and evaluated the performance with different sets of features. We have also compared our work with two prominent and recent works on image-based soil classification systems. The experimental results show that the performance of our proposed method in terms of four standard evaluation metrics, namely accuracy, precision, F1_score, and recall scores are higher than the existing image-based soil classification systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.