Abstract
Bearing health condition directly affects the reliability of mechanical equipment. Although deep learning (DL) algorithms have achieved great results in the field of bearing fault diagnosis, traditional activation function uses a fixed mathematical formula to achieve non-linear feature transformation, which tend to compress part of the effective fault information and reduce the performance of fault diagnosis. To address this problem, this paper proposes a slope and threshold adaptive activation function with tanh function (STAC-tanh). Establish the relationship between non-linear feature transformation and input signal by automatically adjusting the shape of activation function. Finally, the model can retain valid fault information to improve fault diagnosis performance. Then, combining STAC-tanh and Residual Networks, this paper proposes ResNet-STAC-tanh for bearing fault diagnosis. Experimenting on the two bearing datasets with added noise, the average accuracy of the network reached 90.00% and 90.77%, respectively. The effectiveness of the new method was verified through comparative experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.