Abstract

Biomimetic flapping-foil thrusters can operate efficiently while offering desirable levels of thrust required for the propulsion of a small vessel or an Autonomous Underwater Vehicle (AUV). These systems have been studied both as main propulsion devices and for augmenting ship propulsion in waves. In this work, the unsteady hydrofoil loads are used to calculate the source terms of the Ffowcs Williams–Hawkings (FW-H) equation which is applied to model noise propagation in the underwater ocean acoustic environment. The solution provided by a simplified version of the Farassat formulation in free space is extended to account for a bounded domain and an inhomogeneous medium, characterizing the sea acoustic waveguide. Assuming the simplicity azimuthal symmetry of the environmental parameters, a numerical model is developed based on a Finite Difference Time Domain (FDTD) scheme, incorporating free-surface and seabed effects, in the presence of a variable sound speed profile. For the treatment of the outgoing radiating field, a Perfectly Matched Layer (PML) technique is implemented. Numerical results are presented illustrating the applicability of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.