Abstract

Ensuring the safe and stable operation of high-speed trains necessitates real-time monitoring and diagnostics of their suspension systems. While machine learning technology is widely employed for industrial equipment fault diagnosis, its effective application relies on the availability of a large dataset with annotated fault data for model training. However, in practice, the availability of informational data samples is often insufficient, with most of them being unlabeled. The challenge arises when traditional machine learning methods encounter a scarcity of training data, leading to overfitting due to limited information. To address this issue, this paper proposes a novel few-shot learning method for high-speed train fault diagnosis, incorporating sensor-perturbation injection and meta-confidence learning to improve detection accuracy. Experimental results demonstrate the superior performance of the proposed method, which introduces perturbations, compared to existing methods. The impact of perturbation effects and class numbers on fault detection is analyzed, confirming the effectiveness of our learning strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.