Abstract
The safety of an Internet Data Center (IDC) is directly determined by the reliability and stability of its chiller system. Thus, combined with deep learning technology, an innovative hybrid fault diagnosis approach (1D-CNN_GRU) based on the time-series sequences is proposed in this study for the chiller system using 1-Dimensional Convolutional Neural Network (1D-CNN) and Gated Recurrent Unit (GRU). Firstly, 1D-CNN is applied to automatically extract the local abstract features of the sensor sequence data. Secondly, GRU with long and short term memory characteristics is applied to capture the global features, as well as the dynamic information of the sequence. Moreover, batch normalization and dropout are introduced to accelerate network training and address the overfitting issue. The effectiveness and reliability of the proposed hybrid algorithm are assessed on the RP-1043 dataset; based on the experimental results, 1D-CNN_GRU displays the best performance compared with the other state-of-the-art algorithms. Further, the experimental results reveal that 1D-CNN_GRU has a superior identification rate for minor faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Sensors
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.