Abstract
This paper proposes a novel face super-resolution reconstruction (hallucination) technique, color face images reconstruction of RGB space with an error regression model in multi-linear principal component analysis (MPCA). From hallucination framework, many color face images are explained in RGB space. Then, they can be naturally described as tensors or multi-linear arrays. In this way, the error regression analysis is used to find the error estimation which can be obtained from the existi ng LR in tensor space. The framework consists of learning and hallucinating process. In learning process is from the mistakes in reconstruct face images of the training dataset by MPCA, then finding the relationship between input and error by regression analysis. In hallucinating process uses normal method by back-projection of MPCA, after that the result is corrected with the error estimation. In this contribution we show that our hallucination technique can be suitable for color face images both in RGB space. By using the MPCA subspace with error regression model, we can generate photorealistic color face images. Our approach is demonstrated by extensive experiments with high-quality hallucinated color faces. In addition, our experiments on face images from FERET database validate our algorithm
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Future Computer and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.