Abstract

Eddy current problems in synchrotrons have been avoided until now by using costly and thick ceramic vacuum chambers which reduce the free magnet aperture. These disadvantages are eliminated by a novel fabrication technique developed for the chambers of the new 9 GeV electron synchrotron DESY II operating with 12.5 Hz repetion rate. The elliptical chambers 80×40 mm are made from .3 mm thick stainless steel tubes reinforced by thin ribs. The ribs are brazed on the tubes by a high temperature Ni-base brazing alloy. The linear eddy current losses are 60 W/m and increase the chamber temperature to only 50° C. The available beam aperture is now 93% of the magnet gap. A still higher repetion rate up to 100 Hz can be achieved by reducing the wall thickness to .1 mm and using tubes made from a Ti-alloy having higher resistivity than stainless steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call