Abstract

In this study, a novel film of poly(vinyl alcohol) (PVA)/pullulan (PULL) with improved surface characteristics was prepared from poly(vinyl acetate) (PVAc)/PULL blend films with various mass ratios after the saponification treatment in a heterogeneous medium. According to proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared, and X-ray diffraction results, it was established that the successful fabrication of saponified PVA/PULL (100/0, 90/10, and 80/20) films could be obtained from PVAc/PULL (100/0, 90/10, and 80/20) films, respectively, after 72 h saponification at 50 °C. The degree of saponification calculated from 1H-NMR analysis results showed that fully saponified PVA was obtained from all studied films. Improved hydrophilic characteristics of the saponified films were revealed by a water contact angle test. Moreover, the saponified films showed improved mechanical behavior, and the micrographs of saponified films showed higher surface roughness than the unsaponified films. This kind of saponified film can be widely used for biomedical applications. Moreover, the reported saponified film dressing extended the lifespan of dressing as determined by its self-healing capacity and considerably advanced in vivo wound-healing development, which was attributed to its multifunctional characteristics, meaning that saponified film dressings are promising candidates for full-thickness skin wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call