Abstract

Recent progress in deep learning, especially deep convolutional neural networks (DCNNs), has led to significant improvement in natural image classification. However, research is still ongoing in the domain of medical image analysis in part due to the shortage of annotated data sets for training DCNNs, the imbalanced number of positive and negative samples, and the difference between medical images and natural images. In this paper, two strategies are proposed to train a DCNN for pathological lymph node image classification. Firstly, the transfer learning strategy is used to deal with the shortage of training samples. Second, a novel exponential loss function is presented for the imbalance in training samples. Four state-of-the-art DCNNs (GoogleNet, ResNet101, Xception, and MobileNetv2) are tested. The experiments demonstrate that the two strategies are effective to improve the performance of pathological lymph node image classification in terms of accuracy and sensitivity with a mean of 0.13% and 1.50%, respectively, for the four DCNNs. In particular, the proposed exponential loss function improved the sensitivity by 3.9% and 4.0% for Xception and ResNet101, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call