Abstract

BackgroundPrimary graft dysfunction (PGD) remains a major obstacle after lung transplantation. Ischemia–reperfusion injury is a known contributor to the development of PGD following lung transplantation. We developed a novel approach to assess the impact of increased pulmonary blood flow in a large porcine single-left lung transplantation model.MaterialsTwelve porcine left lung transplants were divided in two groups (n = 6, in low- (LF) and high-flow (HF) group). Donor lungs were stored for 24 h on ice, followed by left lung transplantation. In the HF group, recipient animals were observed for 6 h after reperfusion with partially clamping right pulmonary artery to achieve a higher flow (target flow 40–60% of total cardiac output) to the transplanted lung compared to the LF group, where the right pulmonary artery was not clamped.ResultsSurvival at 6 h was 100% in both groups. Histological, functional and biological assessment did not significantly differ between both groups during the first 6 h of reperfusion. injury was also present in the right native lung and showed signs compatible with the pathophysiological hallmarks of ischemia–reperfusion injury.ConclusionsPartial clamping native pulmonary artery in large animal lung transplantation setting to study the impact of low versus high pulmonary flow on the development of ischemia reperfusion is feasible. In our study, differential blood flow had no effect on IRI. However, our findings might impact future studies with extracorporeal devices and represent a specific intra-operative problem during bilateral sequential single-lung transplantation.

Highlights

  • IntroductionPrimary graft dysfunction (PGD) occurs within the first 72 h after lung transplantation (LTx) and it is clinically reflected by impaired gas exchange, alveolar infiltrates on chest X-ray, and pulmonary edema representing acute allograft ischemia–reperfusion injury (IRI) [1]

  • Histological, functional and biologi‐ cal assessment did not significantly differ between both groups during the first 6 h of reperfusion. injury was present in the right native lung and showed signs compat‐ ible with the pathophysiological hallmarks of ischemia–reperfusion injury

  • Primary graft dysfunction (PGD) occurs within the first 72 h after lung transplantation (LTx) and it is clinically reflected by impaired gas exchange, alveolar infiltrates on chest X-ray, and pulmonary edema representing acute allograft ischemia–reperfusion injury (IRI) [1]

Read more

Summary

Introduction

Primary graft dysfunction (PGD) occurs within the first 72 h after lung transplantation (LTx) and it is clinically reflected by impaired gas exchange, alveolar infiltrates on chest X-ray, and pulmonary edema representing acute allograft ischemia–reperfusion injury (IRI) [1]. The hallmark of IRI is the increased permeability of the alveolo-capillary membrane. The following disruption of alveolo-capillary membrane results in increased microvascular permeability, increased PVR, impaired oxygenation and eventually pulmonary edema [4, 5]. Ischemia–reperfusion injury is a known contributor to the develop‐ ment of PGD following lung transplantation. We developed a novel approach to assess the impact of increased pulmonary blood flow in a large porcine single-left lung transplantation model. Materials: Twelve porcine left lung transplants were divided in two groups (n = 6, in low- (LF) and high-flow (HF) group). In the HF group, recipient animals were observed for 6 h after reperfusion with partially clamping right pulmonary artery to achieve a higher flow (target flow 40–60% of total cardiac output) to the transplanted lung compared to the LF group, where the right pulmonary artery was not clamped

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call