Abstract

Hydraulic fracturing is an effective stimulation method for the economic development of tight-gas reservoirs in which extremely low matrix permeability requires complex fracture networks. Petrophysical/mechanical experiments and XRD/SEM analyses demonstrate that volcanic sedimentary rock is characterized by developed natural fracture, strong brittleness, stress sensitivity, AE activity, weak anisotropy, and fluid sensitivity. Fracability index is often utilized as a key parameter to evaluate the ability to generate fracture networks. In this study, a new systematic experimental approach and a new mathematical model are established for the comprehensive evaluation of the fracability of tight-gas formations. These two methods integrate natural fracture, stress sensitivity, rock anisotropic nature, AE activity and crack density. The results indicate that the fracability index (FI) and the calculated crack density (CRD) are positively linearly correlated. The method is successfully applied to evaluate the fracability of the Yingtai gas field in northeast China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.