Abstract

Prevotella nigrescens, a gram-negative black-pigmented anaerobic rod, has frequently been isolated from periodontitis and periapical periodontitis lesions. We have isolated an exopolysaccharide-producing P. nigrescens, strain 22, from a chronic periodontitis lesion. The purpose of this study was to determine the chemical composition and function of the exopolysaccharide associated with this clinical isolate. The chemical composition and structure of the purified exopolysaccharide from strain 22 were determined by high performance liquid chromatography and methylation analysis. To define the biological function of this exopolysaccharide, a chemically induced exopolysaccharide nonproducing mutant, strain 328, which was derived from strain 22, was established. The biological effects of exopolysaccharide were determined by comparing the ability of strain 22, strain 328 or heat-killed strain 22 to form abscesses in mice and to interfere with the phagocytic activity of peripheral blood polymorphonuclear leukocytes. Chemical analysis showed that isolated exopolysaccharide consisted of mannose (521.6 microg/mg), glucose (25.6 microg/mg), fructose (65.8 microg/mg), galactose (12.5 microg/mg), arabinose (6.2 microg/mg), xylose (3.2 microg/mg), rhamnose (6.1 microg/mg), and ribose (0.6 microg/mg). Methylation analysis of exopolysaccharide indicated that the linkages of mannose were primarily (1-->2, 1-->6) (1-->2) (1-->6), and (1-->3). Strain 22 and, to a lesser extent, its heat-killed counterpart induced greater abscess formation in mice than strain 328, even though the enzymatic profile of strain 22 was similar to that of strain 328. The ability of strain 328 to induce abscess formation was restored by adding the purified exopolysaccharide isolated from strain 22 to the cell suspension of strain 328. Exopolysaccharide alone failed to induce abscess formation in mice. Further, strain 328 but not the untreated or heat-killed strain 22, was phagocytosed by polymorphonuclear leukocytes both in the presence and in the absence of opsonic factors. The results suggest that these polysaccharides isolated from strain 22, which primarily consisted of mannose, may play a key role in the development of the chronic inflammatory lesion from which this strain was isolated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call