Abstract

The use of multi-objective approaches in High Level Synthesis has been gaining lot of interest in recent years since the major design objectives such as area, delay and power are mutually conflicting, thereby necessitating trade-offs between different objectives. This paper proposes a methodology for area, power and delay optimization using the Non-dominated Sorting Genetic Algorithm II (NSGA II). A metric based technique has been used to determine the likelihood of a schedule to yield low power solutions during binding. Actual power numbers are not determined since this is computationally expensive. The methodology has been evaluated on standard benchmark Data-Flow Graphs (DFGs) and results indicate that it yields improved solutions with better diversity when compared to a weighted sum GA approach. For the IIR benchmark, it was observed that the NSGA II was able to converge to the true Pareto front obtained from exhaustive search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.