Abstract
Improving productivity at the expense of heavy energy consumption is often no longer possible in modern manufacturing industries. Through efficient scheduling technologies, however, we are able to still maintain high productivity while reducing energy costs. This paper addresses a flexible job shop scheduling problem under Time-Of-Use electricity tariffs with the objective of minimizing total energy consumption while considering a predefined makespan constraint. We propose a novel two-individual-based evolutionary (TIE) algorithm, which incorporates several distinguishing features such as a tabu search procedure, a topological order based recombination operator, a new neighborhood structure for this specific problem, and an approximate neighborhood evaluation method. Extensive experiments are conducted on widely used benchmark instances, which show that the proposed TIE outperforms traditional trajectory-based and population-based methods. We also analyze the key features of TIE to identify its critical success factors, and discuss the impact of varying key parameters of the problem to derive practical insights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.