Abstract
User-based collaborative filtering , a widely used nearest neighbour-based recommendation technique, predicts an item’s rating by aggregating its ratings from similar users. User similarity is traditionally calculated by cosine similarity or the Pearson correlation coefficient . However, both of these measures consider only the direction of rating vectors, and suffer from a range of drawbacks. To overcome these issues, we propose a novel Bayesian similarity measure based on the Dirichlet distribution, taking into consideration both the direction and length of rating vectors. We posit that not all the rating pairs should be equally counted in order to accurately model user correlation. Three different evidence factors are designed to compute the weights of rating pairs. Further, our principled method reduces correlation due to chance and potential system bias. Experimental results on six real-world datasets show that our method achieves superior accuracy in comparison with counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.