Abstract

BackgroundMarine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas.ResultsA metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure.ConclusionsEsterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters.

Highlights

  • Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions

  • High efficient screening for lipolytic enzymes Marine sediment samples from the South China Sea were collected from 23 sampling sites, depth < 100 m (Additional file 1, Table S1)

  • After 72 hr incubation at 37°C, 15 colonies were selected on the basis of stable hydrolysis zone and the lipolytic-positive plasmids were sequenced (Additional file 1, Table S2)

Read more

Summary

Introduction

Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. Marine microbes are a large and diverse group, and are exposed to a wide variety of pressure, temperature, salinity, nutrient availability, and other environmental conditions [1,2,3]. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. Based on comparisons of amino acid sequences and biological properties, prokaryote-derived lipolytic enzymes have been classified into eight families, termed true lipases (family I), the enzymes display a Gly-Asp-Ser-(Leu) [GDS(L)] motif containing the active-site Ser (GDSL, family II), family III, hormone-sensitive lipases (HSL, family IV), and families V~VIII [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.