Abstract
Long-term accumulation of pesticides in the environment to human and animal health. Acetylcholinesterase (AChE) biosensors with highly sensitive potentiometer transducers based on the membranes of Ag, reduced graphene oxide (rGO), and chitosan (CS) has been successfully developed. The membrane was made with a composition of 0.5 mM AgNO3, 2.5 mg/mL rGO, and 2% (w/v) CS coated on the surface of the Au electrode. The composition of the membrane with three ratios, namely 1:1:2, 2:1:3, and 3:1:4. Then, membrane Ag/rGO/CS and the enzyme AChE were immobilized on the membrane surface. The prepared biosensor has excellent conductivity, catalytic activity, and biocompatibility attributed to the synergistic effect of Ag/rGO/CS and glutaraldehyde (GTA) as crosslinkers and providing a hydrophilic surface for AChE adhesion. The linear range in biosensors is 1 × 10-8 to 1 µg L-1 with a regression coefficient of 0.9803 for 1:1:2 membrane, 0.9836 for 2:1:3 membrane, and 0.9850 for 3:1:4 membrane. The LOD is about 1 × 10-7 µg L-1 for all membranes. In addition, the biosensor showed good sensitivity, acceptable reproducibility, and stability, having an RSD of less than 5%. This biosensor makes it possible to provide a new and promising tool for analyzing pesticides, especially organophosphates.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.