Abstract
Ensemble learning is one of the main directions in machine learning and data mining, which allows learners to achieve higher training accuracy and better generalization ability. In this paper, with an aim at improving generalization performance, a novel approach to construct an ensemble of neural networks is proposed. The main contributions of the approach are its diversity measure for selecting diverse individual neural networks and weighted fusion technique for assigning proper weights to the selected individuals. Experimental results demonstrate that the proposed approach is effective.KeywordsEnsemble learningdiversitysensitivityfusionclusteringthe second training
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.