Abstract

Metaheuristics are widely used in science and industry because it as a high-level heuristic technique can provide robust or advanced solutions compared to classical search algorithms. Flow Regime Algorithm is a novel physics-based optimization approach recently proposed, and it is one of the candidate algorithms for solving complex optimization problems because of its few parameter configurations, simple coding, and good performance. However, the population that initialized randomly may have poor diversity issues, resulting in insufficient global search, and premature convergence to local optimum. To solve this problem, in this paper, a novel enhanced Flow Regime Algorithm based on opposition learning scheme is proposed. The proposed algorithm introduces the opposition-based learning strategy into the generation of some populations to enhance the global search performance while maintaining a fast convergence rate. In order to verify the performance of the proposed algorithm, 23 benchmark numerical optimization functions were studied experimentally in detail and compared with six well-known algorithms. Experimental results show that the proposed algorithm outperforms all other metaheuristic algorithms in all unimodal functions with higher accuracy, and can obtain competitive results on more multimodal cases. A statistical comparison shows that the proposed algorithm has superiority. Finally, an ontology alignment application study demonstrate that the proposed algorithm can achieve higher quality alignment compared to most other metaheuristic-based systems and OAEI ontology alignment systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call